Home
Class 12
MATHS
If z=re^i theta then |e^(iz)| is equal t...

If `z=re^i theta` then `|e^(iz)|` is equal to:

Text Solution

Verified by Experts

`z=re^(itheta),iz=ire^(itheta)`
`=l8r{costheta+isintheta}`
`=r(sintheta+icostheta)`
`e^(iz)=e^r*(icostheta-sintheta)`
`=e^(-rsintheta)*e^(ircostheta)`
`|e^(iz) | =|e^(-rsintheta*e*^(ircostheta)`
`=e^(-rsontheta)*|costheta|isintheta|^(rcostheta)`
`=e^(-rsintheta)*(1)^rcostheta`
...
Promotional Banner

Similar Questions

Explore conceptually related problems

If z=re^(itheta) then |e^(iz)| is equal to:

If z= 5e^(itheta), then |e^(iz)| is equal to

If z = re^(itheta) , then abs(e^(iz)) =

If -1+sqrt(-3)=re^(i theta), then theta is equal to

If z=re^(i theta), then prove that |e^(iz)|=e^(-r sin theta)

If z=6e^(i(pi)/(3)) then |e^(iz)=1

If iz^(3)+z^(2)-z+i=0 , where i= sqrt-1 then |z| is equal to