Home
Class 12
MATHS
tan^(- 1)\ x/(sqrt(a^2-y^2))=sin^(- 1)\ ...

`tan^(- 1)\ x/(sqrt(a^2-y^2))=sin^(- 1)\ x/a`

Promotional Banner

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) when y=tan^(- 1)(x/(1+sqrt(1-x^2)))+sin[2tan^(- 1)sqrt((1-x)/(1+x))] ?

(iv) If y=tan^(-1)(x/(1+sqrt(1-x^(2))))+sin(2tan^(-1)sqrt((1-x)/(1+x))) , then find (dy)/(dx) for x epsilon(-1,1)

y=tan^(-1)((x)/(1+sqrt(1-x^(2))))+sin(2tan^(-1)theta*sqrt((1-x)/(1+x))) then prove that ,4(1-x^(2))^(3)((d^(2)y)/(dx^(2)))^(2)+4x=x^(2)+4

Find (dy)/(dx) when (y-tan^(-1))(x)/(1+sqrt(1-x^(2)))+sin[2tan^(-1)sqrt((1-x)/(1+x))]

Find (dy)/(dx) , when y="tan"^(-1)(x)/(1+sqrt(1-x^(2)))+sin(2 tan^(-1)sqrt((1-x)/(1+x)))

Prove that tan^(-1){(x)/(a+sqrt(a^(2)-x^(2)))}=(1)/(2)(sin^(-1)x)/(a),-a

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is

If tan(sin^(-1)sqrt(1-x^2))=sin(tan^(-1)2) then x is