Home
Class 12
MATHS
int0^pi(xtanx)/(tanx+secx).dx=[pi(pi-2)]...

`int_0^pi(xtanx)/(tanx+secx).dx=[pi(pi-2)]/2`

Promotional Banner

Similar Questions

Explore conceptually related problems

int_0^pi (xtanx)/(secx+tanx)dx

int_0^pi((xtanx)/(secx+tanx)) dx

int_(0)^(pi)(xtanx)/(secx+tanx)dx=

int_(0)^(pi)(xtanx)/(secx+cosx)dx=

int_0^pi(pi tanx)/(secx+cosx)dx

int_(0)^(pi)(tanx)/(secx+cosx)dx=

Prove that int_(0)^(pi)(xtanx)/((secx+tanx))dx=pi((pi)/(2)-1) .

int_(0)^(pi)(xtanxdx)/(tanx+secx)=(pi)/(2)(pi-2)

Prove that : int_0^pi (xtanx)/(secxcosecx)dx =pi^2/4 .

int_0^pi tanx/(sinx+tanx)dx