Home
Class 12
MATHS
|z-4| < |z-2| represents the region give...

`|z-4| < |z-2|` represents the region given by: (a) `Re(z) > 0` (b) `Re(z) < 0` (c) `Re(z) > 3` (d) None of these

Text Solution

Verified by Experts

z=x+iy
`|(x-4)+iy|<|(x-2)+iy|`
`(x-4)<(x-2)`
option c is correct.
Promotional Banner

Similar Questions

Explore conceptually related problems

|z-4| (a) Re(z) > 0 (b) Re(z) (c) Re(z) > 3 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If i z^3+z^2-z+i=0 , where i=sqrt(-1) , then |z| is equal to 1 (b) 1/2 (c) 1/4 (d) None of these

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=|w|=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If k>0 , |z|=\w\=k , and alpha=(z-bar w)/(k^2+zbar(w)) , then Re(alpha) (A) 0 (B) k/2 (C) k (D) None of these

If B: {z: |z-3-4i|}=5 and C={z:Re[(3+4i)z]=0} then the number of elements in the set B intesection C is (A) 0 (B) 1 (C) 2 (D) none of these

If C={z:Re[(3+4i)z]=0} thenthe number of elements in the set BcapC is (A) 0 (B) 1 (C) 2 (D) none of these

The value of (z + 3) (barz + 3) is equivlent to (A) |z+3|^(2) (B) |z-3| (C) z^2+3 (D) none of these

The value of (z + 3) (barz + 3) is equivlent to (A) |z+3|^(2) (B) |z-3| (C) z^2+3 (D) none of these