Home
Class 12
MATHS
lim(x->0)[x cosec k x]...

`lim_(x->0)[x cosec k x]`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x->0) cosec^4 x int_0^(x^2) (ln(1 +4t))/(t^2+1) dt is

If (lim)_(x->0)k x\ cos e c\ x=(lim)_(x->0)x\ cos e c\ k x Find k

lim_(x rarr0)x(cosec x)

If lim_(x to 0)kx cosec x= lim_(x to 0) x cosec kx , show that k = +-1 .

Which of the following limits does not exist ?(a) lim_(x->oo) cosec^(-1) (x/(x+7) (B) lim_(x->1) sec^(-1) (sin^(-1)x) (C) lim_(x->0^+) x^(1/x) (D) lim_(x->0) (tan(pi/8+x))^(cotx)

lim_(x rarr 0) (cosec x - cot x)/x is

Evaluate lim_(x rarr 0) (cosec x - cot x)

Evaluate the following limits : Lim_(x to 0 ) (" cosec " x - cot x)/x