Home
Class 12
MATHS
|(1+x,1,1),(1,1+y,1),(1,1,1+z)|=xy+yz+zx...

`|(1+x,1,1),(1,1+y,1),(1,1,1+z)|=xy+yz+zx+xyz`

Promotional Banner

Similar Questions

Explore conceptually related problems

Using prperties of determinants, prove that : |(1,1,1+3x),(1+3y,1,1),(1,1+3z,1)| = 9(3xyz + xy + yz + zx) .

Using properties of determinants prove that ((1,1,1+3x),(1+3y,1,1),(1,1+3z,1)=9(3xyz+xy+yz+zx)

Using properties of determinants prove that |(1,1, 1+3x),(1+3y,1,1),(1, 1+3z,1)| =9(3xyz+xy+yz+zx)

Prove that : |{:(1,x,yz),(1,y,zx),(1,z,xy):}|=(x-y)(y-z)(z-x)

1,1,1+3x1+3y,1,11,1+3z,1]|=9(3xyz+xy+yz+zx)

If D_1=|{:(1,yz,x),(1,zx,y),(1,xy,z):}|and D_2=|{:(1,1,1),(x,y,z),(x^2,y^2,z^2):}| then ,………

The value of |{:(x,x^2-yz,1),(y,y^2-zx,1),(z,z^2-xy,1):}| is

|[1/x,1/y,1/z],[x^(2),y^(2),z^(2)],[yz,zx,xy]|