Home
Class 12
MATHS
cos^(-1)(12)/(13)+sin^(-1)(3)/(5)=sin^(-...

cos^(-1)(12)/(13)+sin^(-1)(3)/(5)=sin^(-1)(56)/(65)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that sin^(-1)""(5)/(13)+cos^(-1)""(3)/(5)=sin^(-1)""(63)/(65)

Show that sin^-1 (3/5)+cos^-1(12/13)=cos^-1(33/65)=sin^-1(56/65)

Rectify the error if any in the following "sin"^(-1)4/(5)+"sin"^(-1)12/(13)+"sin"^(-1)33/(65) ="sin"^(-1)[4/(5)sqrt(1-44/(169))+12/(13)sqrt(1-16/(25))]+"sin"^(-1)33/(65) ="sin"^(-1)(56/(65))+"cos"^(-1)sqrt(1-(33/(65))^(2)) ="sin"^(-1)(56/(65))+"cos"^(-1)(56/(65))=pi/(2)

Prove that "sin"^(-1)(4)/(5) +"sin"^(-1)(5)/(13) +"sin"^(-1)(16)/(65)=(pi)/(2) .

Prove that: sin^(-1)((4)/(5))+sin^(-1)((5)/(13))+sin^(-1)((16)/(65))=(pi)/(2)

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

Prove that cot^(-1).(3)/(4) + sin^(-1).(5)/(13) = sin^(-1).(63)/(65)

Prove that : sin^-1(12/13) + cos^-1(3/5) = sin^-1(56/65)

Prove that : cos^-1(12/13) + sin^-1(3/5) = cos^-1(33/65)