Home
Class 12
MATHS
lim(x rarr 0) (a^sinx-1)/(b^sinx-1) is e...

`lim_(x rarr 0) (a^sinx-1)/(b^sinx-1)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

lim_(xto0)(a^(sinx)-1)/(b^(sinx)-1) is equal to

Evaluate the following limit : lim_(x rarr 0)(e^(sinx)-1)/(sinx) .

lim_(x rarr 0)(e^x-e^sinx)/(2(x-sinx))=

lim_(x rarr 0) (cos (sinx )-1)/x^(2) =

lim_(x rarr 0)"x sin" (1)/(x) is equal to :

(lim_(x rarr0)(sin x^(0))/(x) is equal to a.1b*pi c.xdpi/180