Home
Class 12
MATHS
sin^(-1)sqrt(1-x^(2))+cos^(-1)x=cot^(-1)...

sin^(-1)sqrt(1-x^(2))+cos^(-1)x=cot^(-1)(sqrt(1-x^(2)))/(x)-sin^(-1)x" is "

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution set of equation sin^(-1)sqrt(1-x^(2))+cos^(-1)x=cot^(-1)((sqrt(1-x^(2)))/(x))-sin^(-1)

The solution set of the equation sin^(-1) sqrt(1 - x^(2)) + cos^(-1) x = cot^(-1) ( sqrt(1-x^(2))/x) - sin^(-1) x

y=sin^(-1)((x)/(sqrt(1+x^(2))))+cos^(-1)((1)/(sqrt(1+x^(2))))

y = sin^(-1)(x/sqrt(1+x^2)) + cos^(-1)(1/sqrt(1+x^2))

The complete solution set of the equation sin^(-1) sqrt((1+x)/(2))-sqrt(2-x)=cot^(-1)(tan sqrt(2-x))-sin^(-1) sqrt((1-x)/(2)) is :

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

Express sin^(-1)x in terms of (i) cos^(-1)sqrt(1-x^(2)) (ii) "tan"^(-1)x/(sqrt(1-x^(2))) (iii) "cot"^(-1)(sqrt(1-x^(2)))/x

int(tan(cos^(-1)x)+cot(sin^(-1)x))/(sqrt(1-x^(2)))dx=