Home
Class 12
MATHS
The value of lim(x->oo) [sqrt(x^2+x+1) -...

The value of `lim_(x->oo) [sqrt(x^2+x+1) -(ax+b)]=0`, then

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of lim_(x to oo) (sqrt(x^(2)+ax)-x) is -

lim_(x rarr oo)(sqrt(x^(2)-x+1)-ax-b)=0, then a+b=

The value of lim_(x to oo) (sqrt(x^(2) + x + 1) - sqrt(x^(2) - x + 1)) equals

The value of lim_(x to oo) (sqrt(x^2+1)-sqrt(x^2-1)) is

The value of lim_(x rarr oo) [sqrt(a^(2)x^(2)+ ax+1) - sqrt(a^(2)x^(2)+1)] is

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

If a gt 0 and lim_(xrarr oo) {sqrt(x^2+x+1)-(ax+b)}=0 , then (a,b) lies on the line.

If lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0, then for k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =

If lim _(xto oo) (sqrt( x ^(2) -x+1)-ax -b)=0, then for k ge 2, (k in N ) lim _(xto oo) sec ^(2n) (k ! pi b ) =

lim_ (x rarr-oo) [sqrt (x ^ (2) + x + 1) -x]