Home
Class 9
MATHS
111^(3)-89^(3)...

111^(3)-89^(3)

Promotional Banner

Similar Questions

Explore conceptually related problems

(32)^(3)+(79)^(3)-(111)^(3)+3xx32xx79xx111

Stetement I: Decimal value of the binary number 111 is 7. Therefore, (0.111)_(2) = (7/(2^(3)))_(10) . Statement II: Decimal fraction 0.111 can be written as (111)/(10^(3)) .

|(1,1,1),(a,b,c),(a^(3),b^(3),c^(3))|=

(32)^(3)+(79)^(3)-(111)^(3)+3xx32xx79xx111 is equal to (a)0(b)1(c)10000(d)30007

|(1,1,1),(a^(2),b^(2),c^(2)),(a^(3),b^(3),c^(3))|=

The value of the expression (3-tan^(2)1^(@))(3-tan^(2)2^(@))(3-tan^(2)3^(@))...(3-tan^(2)89^(@)) is equal to

The value of the expression (3-tan^(2)1^(@))(3-tan^(2)2^(@))(3-tan^(2)3^(@))...(3-tan^(2)89^(@)) is equal to