Home
Class 12
MATHS
int(2x-1)/(4x^(2))e^(2x)...

int(2x-1)/(4x^(2))e^(2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Let I = int (e^x)/(e^(4x)+e^(2x)+1)dx, J=int (e^(-x))/(e^(-4x)+e^(-2x)+1)dx . Then , for an arbitrary constant c, the value of J-1 euqals :

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

If I=int(e^x)/(e^(4x)+e^(2x)+1) dx. J=int(e^(-x))/(e^(-4x)+e^(-2x)+1) dx. Then for an arbitrary constant c, the value of J-I equal to

Let a=int_0^(log2) (2e^(3x)+e^(2x)-1)/(e^(3x)+e^(2x)-e^x+1)dx , then 4e^a =

Let a=int_0^(log2) (2e^(3x)+e^(2x)-1)/(e^(3x)+e^(2x)-e^x+1)dx , then 4e^a =

int (e^(2x)-1)/(e^(2x)+1) dx=?

int(e^(2x) -1)/(e^(2x) + 1) dx

int(e^(2x)-1)/(e^(2x)+1)dx=...