Home
Class 12
MATHS
4[cot^(-1)3+csc^(-1)sqrt(5)]=pi...

4[cot^(-1)3+csc^(-1)sqrt(5)]=pi

Promotional Banner

Similar Questions

Explore conceptually related problems

cot^(-1)3+cosec^(-1)sqrt(5)=

" (3.) "cot^(-1)3+cosec^(-1)sqrt(5)=..........

4(cot ^(-1)3+"cosec"^(-1) sqrt(5))=pi

Show that: 4(cot^(-1)(3/2)+cosec^(-1)sqrt(26))=pi .

Prove that : (i) tan^(-1) x + cot^(-1)( x+1) = tan^(-1) (x^(2)+x+1) (ii) cot^(-1) 3 + "cosec"^(-1) sqrt(5) = pi/4

cot^(-1)9 + cosec^(-1)(sqrt(41)/4)=

Prove that : cot^-1 3 + cosec^-1 sqrt5 = pi/4

cot^(-1)9+cosec^(-1)(sqrt(41))/(4)=(pi)/(4)

The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is

The sum of the two angles cot^(-1) 3 and cosec^(-1) sqrt(5) is