Home
Class 12
MATHS
" 2."int(pi/2)^(x)sqrt(3-2sin^(2)t)dt+in...

" 2."int_(pi/2)^(x)sqrt(3-2sin^(2)t)dt+int_(0)^(y)cos tdt=0" then "((dy)/(dx))_((x,x))

Promotional Banner

Similar Questions

Explore conceptually related problems

If int_(pi//3)^(x)sqrt((3-sin^(2)t))dt+int_(0)^(y)cost dt =0 then (dy)/(dx) is

If int_((pi)/(2))^(x)sqrt(3-2sin^(2))tdt+int_(0)^(y)cos tdt=0, then ((dy)/(dx))atx=pi and y=pi is

if int_((pi)/(3))^(x)sqrt(3-sin^(2)t)dt+int_(0)^(y)cos tdt=0 then (dy)/(dx) is (A)(sqrt(3-sin^(2)x))/(cos y)(B)-(sqrt(3-sin^(2)x))/(cos y) (C) -(sqrt(3-cos^(2)x))/(sin y) (D) none of these

If int_((pi)/(3))^(x)sqrt((3-sin^(2)t))dt+int_(0)^(y)cos tdt=0, then evaluate (dy)/(dx)

If int_(pi/2)^x sqrt(3-2sin^2) tdt+ int_0^y costdt=0, then (dy/dx)at x =pi and y=pi is

If int_(0)^(y)cos t^(2)dt=int_(0)^(x^(2))(sin t)/(t)dt, then (dy)/(dx) is

Find the derivative (dy)/(dx) of the following implicit functions : (a) int_(0)^(y) e^(-t^(2)) dt + int_(0)^(x^(3)) sin ^(2) t dt = 0 (b) int_(0)^(y) e^(t) dt + int _(0)^(x) sin t dt = 0 (c) int _(pi//2)^(x) sqrt(3 - 2 sin^(2)z ) dz + int_(0)^(y) cos t dt = 0

If int_(0)^(y)e^(-t^(2))dt+int_(0)^(x^(2))sin^(2)tdt=0 , then (dy)/(dx) at x=y=1 is

int_(0)^(pi/2)(sin^(2)x*cos x)dx=