Home
Class 12
MATHS
sin^(-1)(14)/(|x|)+sin^(-1)((2sqrt(15))/...

sin^(-1)(14)/(|x|)+sin^(-1)((2sqrt(15))/(|x|))=(pi)/(2)

Promotional Banner

Similar Questions

Explore conceptually related problems

Solve sin^(-1). (14)/(|x|) + sin^(-1).(2 sqrt15)/(|x|) = (pi)/(2)

Solve sin^(-1). (14)/(|x|) + sin^(-1).(2 sqrt15)/(|x|) = (pi)/(2)

The vaue of x satisfying sin^(-1)(x)+sin^(-1)(sqrt(15)x)=(pi)/2 is

The vaue of x satisfying sin^(-1)(x)+sin^(-1)(sqrt(15)x)=(pi)/2 is

sin^(-1)sqrt(x)+sin^(-1)sqrt(1-x)=(pi)/(2)

sin ^(-1)sqrt(3)x+sin ^(-1)x=(pi)/(2)

The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15))/(|x|))=cos^(-1)((14)/(|x|)) is

The maximum value of x that satisfies the equation sin^(-1)((2sqrt(15))/(|x|))=cos^(-1)((14)/(|x|)) is

solve : tan^(-1) sqrt(x(x+1))+sin ^(-1) (sqrt(1+x+x^(2)))=(pi)/(2)

Solve: tan^(-1)sqrt(x(x+1) + sin^(-1)sqrt(1+x+x^2) = pi/2