Home
Class 12
MATHS
tan^(-1)(2x)/(1-x^(2))+cot^(-1)(1-x^(2))...

tan^(-1)(2x)/(1-x^(2))+cot^(-1)(1-x^(2))/(2x)

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

Prove that: tan^(-1)((1-x^2)/(2x))+cot^(-1)((1-x^2)/(2x))=pi/2

tan^(-1)((2x)/(x^(2)-1))+cot^(-1)((x^(2)-1)/(2x))=-(4 pi)/(3)

Prove that: tan^(-1)((1-x^(2))/(2x))+cot^(-1)((1-x^(2))/(2x))=(pi)/(2)

Differentiate w.r.t. x : (i)cot^(-1)((1)/(x))" "(ii)tan^(-1)((2x)/(1-x^(2)))" "(iii)cot^(-1)((1-x)/(1+x))

int_(-1)^(3)[tan^(-1).(x)/(x^(2)+1)+cot^(-1).(x)/(x^(2)+1)]dx

If tan^(-1)((x-1)/(x-2))+cot^(-1)((x+2)/(x+1))=(pi)/(4) , find x.

If 2int_(0)^(1) tan^(-1)xdx=int_(2)^(1)cot^(-1)(1-x+x^(2))dx . Then int_(0)^(1) tan^(-1)(1-x+x^(2))dx is equal to

If Tan^(-1)((x-1)/(x-2))+Cot^(-1)((x+2)/(x+1))=pi/4 , then x =

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x