Home
Class 12
MATHS
If the circles x^2+y^2+2a x+c=0a n dx^2+...

If the circles `x^2+y^2+2a x+c=0a n dx^2+y^2+2b y+c=0` touch each other, then `1/(a^2)+1/(b^2)=1/c` (b) `1/(a^2)+1/(b^2)=1/(c^2)` (c) `a+b=2c` (d) `1/a+1/b=2/c`

Promotional Banner

Similar Questions

Explore conceptually related problems

If the circles x^2+y^2+2a x+c=0a n dx^2+y^2+2b y+c=0 touch each other, then (a) 1/(a^2)+1/(b^2)=1/c (b) 1/(a^2)+1/(b^2)=1/(c^2) (c) a+b=2c (d) 1/a+1/b=2/c

If the circles x^(2)+y^(2)+2ax+c=0 and x^(2)+y^(2)+2by+c=0 touch each other,then (1)/(a^(2))+(1)/(b^(2))=(1)/(c)(b)(1)/(a^(2))+(1)/(b^(2))=(1)/(c^(2))(c)a+b=2c(d)(1)/(a)+(1)/(b)=(2)/(c)

Show that the circles x^(2)+y^(2)+2ax+c=0 and x^(2)+y^(2)+2by+c=0 touch each other if 1/(a^(2))+1/(b^(2))=1/c

Show that the circles x^2 +y^2 + 2ax + c = 0 and x^2 + y^2 + 2by + c = 0 touch each other if 1//a^2 + 1//b^2 = 1//c.

If the circles x ^2 + y ^2 + 2ax + c = 0 and x ^2 + y ^2 +2by + c = 0 touch each other, prove that 1/a ^2 + 1 b ^2 = 1/c

Show that the circles x^(2) +y^(2) + 2ax + c=0 and x ^(2) + y^(2) + 2by + c=0 to touch each other if (1)/(a^(2)) + (1)/( b^(2)) = (1)/( c )

Prove that the circle x^(2) + y^(2) + 2ax + c^(2) = 0 and x^(2) + y^(2) + 2by + c^(2) = 0 touch each other if (1)/(a^(2)) + (1)/(b^(2)) = (1)/(c^(2)) .

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then (a) a+b+c=0 (b) a+b=2 (c) b-c=1 (d) a+c=-2

Let the parabolas y=x(c-x)a n dy=x^2+a x+b touch each other at the point (1,0). Then (a) a+b+c=0 (b) a+b=2 (c) b-c=1 (d) a+c=-2

If a b+b c+c a=0 , then what is the value of (1/(a^2-b c)+1/(b^2-c a)+1/(c^2-a b)) ? (a) 0 (b) 1 (c) 3 (d) a+b+c