Home
Class 12
MATHS
f(log a)/(b-c)=(log b)/(c-a)=(log c)/(a-...

f(log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b)" then "a^(a)*b^(b)*c^(c)=

Promotional Banner

Similar Questions

Explore conceptually related problems

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)*b^(c+a)*c^(a+b)=

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then a^(b+c)+b^(c+a)+c^(a+b) is

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that (a^(a))(b^(c))(c^(c))=1

If (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then prove that a^(b+c)*b^(c+a)*c^(a+b)=1

If a,b,c are positive reral numbers such that (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b), then prove that

a,b,c are positive real numbers such that log a(b-c)=(log b)/(c-a)=(log c)/(a-b) then prove that (1)a^(b+c)+b^(c+a)+c(a+b)>=3(2)a^(a)+b^(b)+c^(c)>=3

underset equal to b-c=(log y)/(c-a)=(log z)/(a-b) then x^(a)y^(b)z^(c) is

if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

(v) quad if (log a)/(b-c)=(log b)/(c-a)=(log c)/(a-b) then find the value of a^(a)b^(b)c^(c)

Let (log a)/( b-c) = (logb)/(c-a) = (log c)/(a-b) STATEMENT 1: a^(a) b^(b) c^(c) = 1 STATEMENT 2: a^(b+c) b^(c +a) c^(a + b) = 1