Home
Class 11
MATHS
[" If "A^(2)-A+I=0," then the inverse of...

[" If "A^(2)-A+I=0," then the inverse of "A" is- "|EEEF-2005J],[[" (1) "I-A," (2) "A-I," (3) "A," (4) "A+I]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If A^(2) - A + I = O , then the inverse of A is :

If A^(2)-A+I=0 then the inverse of the matrix A is

If A^(2) - A + I = 0 , then the inverse of the matrix A is

If A^(2)-A+ I =0 then the inverse of A is - (a) I-A (b) A-I (c) A (d) A+I

If A^(2)-A+I=0, then the inverse of A is: (A) A+I (B) A(C)A-I (D) I-A

If A^2-A +I = 0 , then the inverse of A is: (A) A+I (B) A (C) A-I (D) I-A

If A^2-A +I = 0 , then the inverse of A is: (A) A+I (B) A (C) A-I (D) I-A

If A^2-A +I = 0 , then the inverse of A is: (A) A+I (B) A (C) A-I (D) I-A

If A^2-A+I=0, then the inverse of A is a. A^(-2) b. A+I c. I-A d. A-I