Home
Class 12
MATHS
Find the value of sum(n=0)^100 i^(n!), w...

Find the value of `sum_(n=0)^100 i^(n!),` where `i=sqrt(- 1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of sum_(n=0)^(100)i^(n!) equals (where i=sqrt(-1))

The value of sum_(n=0)^(100)i^(n) equals (where i=sqrt(-1))

The valule of sum_(n=1)^(8)(i^(n)), where i=sqrt(-1)

The value of sum_(n=0)^(50)i^(2n+n)! (where i=sqrt(-1)) is

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).

Find he value of sum_(r=1)^(4n+7)\ i^r where, i=sqrt(- 1).