Home
Class 11
MATHS
If cot^-1(sqrtcos1)-tan^-1(sqrtcos1)=alp...

If `cot^-1(sqrtcos1)-tan^-1(sqrtcos1)=alpha,` then the value of `sinalpha ` is -

Promotional Banner

Similar Questions

Explore conceptually related problems

If cot^(-1)(sqrt(cos1))-tan^(-1)(sqrt(cos1))=alpha then the value of sin alpha is -

If u=cot^(-1)sqrtcos alpha-tan^(-1)sqrt(cosalpha) then prove that sincup=tan^2(alpha/2) .

cot^(-1)(sqrtcosalpha)-tan^(-1)(sqrt(cos alpha))=x , then sin x is equal to a) tan^2""alpha/2 b) cot^2""alpha/2 c) tan alpha d) cot ""alpha/2

If tan alpha= sqrt2-1 then the value of tan alpha-cot alpha = ?

If alpha is in first quadrant such that tan^(2)alpha=(8)/(7) , then the value of ((1+sinalpha)(1-sinalpha))/((1+cosalpha)(1-cosalpha))

If cot^(-1)(sqrt(sinalpha))+tan^(-1)(sqrt(sinalpha))=u,"then"cos2u"is equal to"

If f(x)=(tan x cot alpha)^((1)/(x-a)),x!=alpha is continuous at x=alpha, then the value of f(alpha) is

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is

If sinalpha=1/2 and cosbeta=1/2 , then the value of (alpha+beta) is

If alpha=tan^(-1)x+tan^(-1)((1)/(x)) beta=cot^(-1)x+cot^(-1)((1)/(x)) then the value of alpha^(2)+beta^(2) can be equal to