Home
Class 12
MATHS
[" The lines "(x+4)/(3)=(y+6)/(5)=(z-1)/...

[" The lines "(x+4)/(3)=(y+6)/(5)=(z-1)/(-2)" and "3x-2y+z+5=0=2x+3y+4z-k" are coplanar,then "k" is - "],[[" (1) "1," (2) "2," (3) "3," (4) "4]]

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that the lines (x+4)/3=(y+6)/5=(z-1)/(-2) and 3x-2y+z+5=0=2x+3y+4z-4 are co-planar.

If the lines (x+4)/(3)=(y+6)/(5)=(z-1)/(-2) and 3x-2y+z+5=0=2x+3y+4z-k are coplanar,then k=(a)-4(2)3(3)2(4)4 (5)1

If the lines (x+4)/3=(y+6)/5=(z-1)/(-2) and 3x-2y+z+5=0=2x+3y+4z-k are coplanar, then k= (a) -4 (2) 3 (3) 2 (4) 4 (5) 1

The (x+4)/(3) = (y+6)/(5) = (z-1)/(-2) and 3x - 2y + z+5 =0 = 2x + 3y + 4z -k are coplanar for k is equal to

The lines (x-1)/(2)=(y)/(-1)=(z)/(2) and x-y+z-2=0=lambda x+3z+5 are coplanar for lambda

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if

The lines (x-2)/(1)=(y-3)/(1)=(z-4)/(-k) and (x-1)/(k)=(y-4)/(2)=(z-5)/(1) are coplanar, if