Home
Class 12
MATHS
The value of tan^(-1)4/7+tan^(-1)4/(19)+...

The value of `tan^(-1)4/7+tan^(-1)4/(19)+tan^(-1)4/(39)+tan^(-1)4/(67)+ooe q u a l s` `tan^(-1)1+tan^(-1)1/2+tan^(-1)1/3` `tan^(-1)+cot^(-1)3` `cot^(-1)1+cot^(-1)1/2cot^(-1)1/3` `cot^(-1)1+tan^(-1)3`

Promotional Banner

Similar Questions

Explore conceptually related problems

cot(tan^(-1)a+cot^(-1)a)

Find the value of tan^(-1)(1/2tan2A)+tan^(-1)(cotA)+tan^(-1)(cot^3A),

The value of tan(tan^(-1)5+"cot"^(-1)(1)/(3)) is :

The value of tan(tan^(-1)5+"cot"^(-1)(1)/(3)) is :

tan^(-1)a+cot^(-1)(a+1)=tan^(-1)(a^(2)+a+1)

The value of tan^(-1)(1/2tan2A) +tan^(-1)(cotA)+tan^(-1)(cot^3A), for 0 lt A lt pi//4 is a) tan^(-1)2 b) tan^(-1)(cotA) c) 4 tan^(-1)(1) d) 2 tan^(-1)(2)

What is the value of tan(tan^(-1)x + tan^(-1)y + tan^(-1)z)-cot(cot^(-1)x + cot^(-1)y + cot^(-1)z) ?

if tan^(-1)x+ tan^(-1)y= (4 pi)/(5) then cot^(-1)x+ cot^(-1)y is equal to