Home
Class 12
MATHS
The sum of series sec^(-1)sqrt(2)+sec^(-...

The sum of series `sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2))` is `tan^(-1)1` (b) `n` `tan^(-1)(n+1)` (d) `tan^(-1)(n-1)`

Promotional Banner

Similar Questions

Explore conceptually related problems

The sum of series sec^(-1)sqrt(2)+sec^(-1)(sqrt(10))/3+sec^(-1)(sqrt(50))/7++sec^(-1)sqrt(((n^2+1)(n^2-2n+2))/((n^2-n+1)^2)) is (a) tan^(-1)n (b) n (c) tan^(-1)(n+1) (d) tan^(-1)(n-1)

The sum of series sec^(-1) sqrt2 + sec^(-1).(sqrt10)/(3) + sec^(-1).(sqrt50)/(7) +... + sec^(-1) sqrt(((n^(2) + 1) (n^(2) -2n + 2))/((n^(2) -n + 1)^(2))) is

Find the sum cosec^(-1)sqrt(10)+cosec^(-1)sqrt(50)+cosec^(-1)sqrt(170)++cosec^(-1)sqrt((n^2+1)(n^2+2n+2))

Find the sum csc^(-1)sqrt(10)+csc^(-1)sqrt(50)+csc^(-1)sqrt(170)+...+csc^(-1)sqrt((n^(2)+1)(n^(2)+2n+2))

tan^(-1)(sqrt(3))+sec^(-1)(-2) =

tan^(-1)sqrt(3)-sec^(-1)(-2)

The sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

The sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

The sum of the infinte series sin^(-1)(1/sqrt(2))+sin^(-1)((sqrt(2)-1)/(sqrt(6)))+....sin^(-1)((sqrt(n)-sqrt(n-1))/(sqrt(n(n+1))))

Find the sum cosec^(-1) sqrt10 + cosec^(-1) sqrt50 + cosec^(-1) sqrt(170) + .... + cosec^(-1) sqrt((n^(2) + 1) (n^(2) + 2n + 2))