Home
Class 12
MATHS
Prove that:(9pi)/8-9/4sin^(-1)1/3=9/4sin...

Prove that:`(9pi)/8-9/4sin^(-1)1/3=9/4sin^(-1)(2sqrt(2))/3`

Promotional Banner

Similar Questions

Explore conceptually related problems

(9pi)/8-9/4"sin"^(-1)1/3=9/4sin^(-1)((2sqrt(2))/3)

Prove that : (9pi)/8-9/4"sin"^(-1)1/3=9/4"sin"^(-1)(2sqrt2)/3

Prove That : (9pi)/8-9/4"sin"^(-1)1/3=9/4"sin"^(-1)(2sqrt(2))/3

Prove That : (9pi)/4-9/8"sin"^(-1)1/3=9/4"sin"^(-1)(2sqrt(2))/3

Prove the following: (9pi)/8-9/4sin^(-1)(1/3)=9/4sin^(-1)((2\ sqrt(2))/3)

Prove that: (9pi/8) - (9/4)sin^-1(1/3) = (9/4)sin^-1(2sqrt2/3)

Prove the following : (9pi)/8-9/4 sin^(-1)(1/3)=9/4 sin^(-1) ((2sqrt2)/3)

Prove that (9pi)/8 - 9/4 sin^-1 (1/3) = 9/4 si^-1 ((2sqrt2)/3)

Show that : (9pi)/8 - 9/4 sin^-1(1/3) = 9/4 sin^-1((2sqrt2)/3)

Prove that (9pi)/(8)-9/(4)"sin"^(-1)1/(3)=9/(4)"sin"^(-1)(2sqrt(2))/(3) .