Home
Class 12
MATHS
8cos^(2)8cos(sec^(-1)x+csc^(-1)x),|x|>=1...

8cos^(2)8cos(sec^(-1)x+csc^(-1)x),|x|>=1^(-x)sin^(2)pi sin(1)/(2sin401)

Promotional Banner

Similar Questions

Explore conceptually related problems

"cosec"(sin^(-1)x+cos^(-1)x)

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx=

int (cos^(8)x-sin^(8)x)/(1-2 cos^(2)sin^(2)x)dx=

prove that sin^(-1) cos sin^(-1)x + cos^(-1) sin cos^(-1)x = pi /2

int (sin^(8)x-cos^(8)x)/(1-2sin^(2)x+2sin^(4)x) dx =

The domain of f(x) =cos ^(-1) (sec (cos ^(-1) x)) + sin ^(-1) ( cosec( sin ^(-1) x)) is

int(sin^(8)x-cos^(8)x)/(1-2sin^(2)x cos^(2)x)dx

Solve the equation sqrt(|sin^(-1)|cos x||+|cos^(-1)|sin x||)=sin^(-1)|cos x|-cos^(-1)|sin x|,(-pi)/(2)<=x<=(pi)/(2)

The value of sin^(-1)(cos(cos^(-1)(cos x)+sin^(-1)(sin x))) where x in((pi)/(2),pi), is equal to (pi)/(2)(b)-pi(c)pi (d) -(pi)/(2)