Home
Class 12
MATHS
Define f(x) = 1/2[|sin x| + sin x],0ltxl...

Define `f(x) = 1/2[|sin x| + sin x],0ltxlt2 pi.` then `f` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Define f(x) = (1)/(2)[|sinx|+sin x], 0 lt x le 2pi . Then f is

f(x)=(1)/(2)[|sin x|+sin x],0

Let f: { - pi/3, (2pi)/(3)} rarr [0, 4] be a function defined as f(x)=sqrt(3) sin x - cos x + 2 . Then f^(-1)(x) is given by

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

If f (x) = tan ^(-1)sqrt((1 + sin x )/(1 - sin x)), 0 le x le (pi)/(2) then f' ((pi)/(6)) =?

Let the function f(x) = sin x + cos x , be defined in [0, 2pi] , then f(x)

The function f(x) = (1-sin x + cos x)/(1+sin x + cosx) is not defined at x = pi . The value of f(pi) , so that f(x) is continuous at x = pi is

The function f(x) = (1-sin x + cos x)/(1+sin x + cosx) is not defined at x = pi . The value of f(pi) , so that f(x) is continuous at x = pi is