Home
Class 12
MATHS
Minimum value of (sin x)^sinx in 0 lt x ...

Minimum value of `(sin x)^sinx` in `0 lt x lt pi/2` is

Promotional Banner

Similar Questions

Explore conceptually related problems

Maximum and minimum value of f(x) = max (sin t), 0 lt t lt x le 0 x le 2pi are

The maximum and minimum values of f(x)=secx+logcos^(2)x,0 lt x lt 2pi are respectively

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

Find the maximum and minimum values of the function f(x) = x+ sin 2x, (0 lt x lt pi) .

f(x) = {{:((1 + |sin x|)^((p)/(|sinx|)) " if " - pi //6 lt x lt 0 ),(e^((sin 2x )/(sin3x) )" if " 0 lt x lt pi //6 ):} and f(0) = q is continuous at x = 0 then

Show that : x- x^3/6 lt sinx for 0 lt x lt pi/2

Show that : x- x^3/6 lt sinx for 0 lt x lt pi/2