Home
Class 12
MATHS
At x = 0, f(x) = (3 - x)e^(2x) - 4xe^x -...

At `x = 0, f(x) = (3 - x)e^(2x) - 4xe^x -x`

Promotional Banner

Similar Questions

Explore conceptually related problems

f(x) = (3-x)e^(2x) - 4xe^x - x has

int x.e^(2x)dx

if f(x)=xe^(x) find f'(x)

If f(x) is continuous at x=0 , where f(x)=(e^(5x)-e^(2x))/(sin 3x) , for x!=0 then f(0)=

If f(x)=|(2^(-x),e^(xlog_(2)2),x^(2)),(2^(-3x),e^(3xlog_(e)2),x^(4)),(2^(-5x),e^(5xlog_(e)2),1)| , then a) f(x) + f(-x) = 0 b)f(x) - f(-x) =0 c)f(x) + f(-x)=2 d)None of these

The sum of the series (x)/(1)+(2x^(2))/(2)+(3x^(3))/(3)+ is xe^(x) b.-xe^(x) c.xe^(x)-x d.xe^(x)+x

If int (xe^x)/(sqrt(1 + e^x)) dx = f(x) sqrt(1 + e^x) - 2 In g(x) + c , then