Home
Class 11
MATHS
Consider a circle x^2+y^2+a x+b y+c=0 l...

Consider a circle `x^2+y^2+a x+b y+c=0` lying completely in the first quadrant. If `m_1a n dm_2` are the maximum and minimum values of `y/x` for all ordered pairs `(x ,y)` on the circumference of the circle, then the value of `(m_1+m_2)` is (a)`(a^2-4c)/(b^2-4c)` (b) `(2a b)/(b^2-4c)` (c)`(2a b)/(4c-b^2)` (d) `(2a b)/(b^2-4a c)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Consider a circle x^(2)+y^(2)+ax+by+c=0 lying completely in the first quadrant .If m_(1) and m_(2) are maximum and minimum values of y//x for all ordered pairs (x,y) on the circumference of the circle, then the value of (m_(1)+m_(2)) is

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (a) (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a^2x^4+b^2y^4=c^6, then the maximum value of x y is (c^2)/(sqrt(a b)) (b) (c^3)/(a b) (c^3)/(sqrt(2a b)) (d) (c^3)/(2a b)

If a x+b y+c z=p , then minimum value of x^2+y^2+z^2 is (p/(a+b+c))^2 (b) (p^2)/(a^2+b^2+c^2) (a^2+b^2+c^2)/(p^2) (d) ((a+b+c)/p)^2

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

Prove that the greatest value of x y is c^3/sqrt(2a b) , if a^2x^4+b^2y^4=c^6dot

The value of c for which the equation a x^2+2b x+c=0 has equal roots is (a) (b^2)/a (b) (b^2)/(4a) (c) (a^2)/b (d) (a^2)/(4b)

The value of c for which the equation a x^2+2b x+c=0 has equal roots is (b^2)/a (b) (b^2)/(4a) (c) (a^2)/b (d) (a^2)/(4b)

If a+b+c=0&a^(2)+b^(2)+c^(2)=1 then the value of a^(4)+b^(4)+c^(4) is

If a+b+c=0 and a^(2)+b^(2)+c^(2)=1, then the value of a^(4)+b^(4)+c^(4) is