Home
Class 11
MATHS
If sin (A + B) = p, cos^2(A + C) = q, wh...

If `sin (A + B) = p, cos^2(A + C) = q`, where `q > 0` then `sin (B-C) =`

Promotional Banner

Similar Questions

Explore conceptually related problems

sin A + sin B + sin C = cos A + cos B + cos C = 0then (A) cos (AB) = - (1) / (2) (B) sin ^ (2) A + sin ^ (2) B + sin ^ (2) C = 0 (C) sin ^ (2) A + sin ^ (2) B + sin ^ (2) C = (3) / (2) (D) cos ^ (2) A + cos ^ (2) B + cos ^ (2) C = (3) / (2)

If : A+B+C=pi, "then"" "sin ^(2) A +sin^(2)B - sin ^(2)C= A) 2 cos A * cos B * sin C B) 2 cos B * cos C * sin A C) 2 sin A * sin B * cos C D) 2 sin B * sin C * cos A

If p = sin (A-B) sin (C-D) q = sin (B-C) sin (A-D) , r = sin (C-A) sin (B- D) then

if (sin A)/(sin B)=p and (cos A)/(cos B)=q then find tan A&tan B

If (sin A)/(sin B)=p and (cos A)/(cos B)=q, find tan A and tan B.

If A+B+C =pi , sin A sin B sin C=p and cos A cos B cos C=q then obtain the cubic equation whose roots are tan A, tan B and tan C.

If cos(A+B+C)=cos A cos B cos C, then find the value of (8sin(B+C)sin(C+A)sin(A+B))/(sin2A sin2sin2C)