Home
Class 12
MATHS
(cosalpha-cosbeta)/(sinbeta-sinalpha)=ta...

`(cosalpha-cosbeta)/(sinbeta-sinalpha)=tan((alpha+beta)/2)`

Promotional Banner

Similar Questions

Explore conceptually related problems

Prove that: (cosalpha-cosbeta)^2+(sinalpha-sinbeta)^2=4sin^2((alpha-beta)/2)^(\ )

(sinalpha+sinbeta-sin(alpha+beta))/(sinalpha+sinbeta+sin(alpha+beta))=tan(alpha/2)tan(beta/2)

Simplify (sinalpha+sinbeta)/(cosalpha-cosbeta)+(cosalpha+cosbeta)/(sinalpha-sinbeta)

(cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2 =

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

Evaluate |(cosalphacosbeta,cosalpha sinbeta , - sin alpha),(-sin beta,cosbeta,0),(sinalphacosbeta,sinalpha sinbeta,cosalpha)|

Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)dot

Prove that: (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)

Prove that (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)dot

Prove that: (cosalpha+cosbeta)^2+(sinalpha+sinbeta)^2=4cos^2((alpha-beta)/2)