Home
Class 12
MATHS
The value of 1/(log2 N)+1/(log3N)+1/(lo...

The value of `1/(log_2 N)+1/(log_3N)+1/(log_4N)+...+1/(log_(1988)N)` is ; `(N > 0 and N != 0)` (i)` 1/(log_1998(1/N)) ` (ii) `log_N (1998!)` (iii) `log_N1998` (iv) none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

( The value of )/(log_(2)N)+(1)/(log_(4)N)+...+(1)/(log_(1988)N) is ;(N>0 and N!=0)( i) (1)/(log_(1998)((1)/(N)))( ii) log_(N)(1998!) (iii) log _(N)1998 (iv) none of these

What is the value of (1)/(log_(2)n)+(1)/(log_(3)n)+ . . .+(1)/(log_(40)n) ?

The value of (1)/(log_(3)n)+(1)/(log_(4)n) + (1)/(log_(5)n) + ... + (1)/(log_(8)n) is ______.

Prove that: 1/(log_2N)+1/(log_3N)+1/(log_4N)+…+1/(log_(2011)N)=1/(log_(2011!)N)

The value of N satisfying log_(a)[1+log_(b){1+log_(c)(1+log_(p)N)}]=0 is

The value of N satisfying log_(a)[1+log_(b){1+log_(c)(1+log_(p)N)}]=0 is