Home
Class 12
MATHS
52 Show that a(b - c)x^2 + b(c - a)xy +...

52 Show that `a(b - c)x^2` +` b(c - a)xy` + `c(a - b)y^2` will be a perfect square if a, b, c are in H.P

Promotional Banner

Similar Questions

Explore conceptually related problems

Show that If a(b-c) x^2 + b(c-a) xy + c(a-b) y^2 = 0 is a perfect square, then the quantities a, b, c are in harmonic progresiion

Show that If a(b-c) x^2 + b(c-a) xy + c(a-b) y^2 = 0 is a perfect square, then the quantities a, b, c are in harmonic progresiion

Show that If a(b-c) x^2 + b(c-a) xy + c(a-b) y^2 = 0 is a perfect square, then the quantities a, b, c are in harmonic progression

If the expression a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2) is a perfect square, then a,b,c are in

Show that If a(b-c)x^(2)+b(c-a)xy+c(a-b)y^(2)=0 is a perfect square,then the quantities a,b,care in harmonic progresion

If a(b-c)x^(2)+b(c-a)x+c(a-b) is a perfect square then a,b,c are in

If the roots of the equation a(b-c)x^(2) + b(c-a) x+c(a-b)=0 are equal, then prove that a, b, c are in H.P

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is

If the left hand side of the equation a(b-c)x^2+b(c-a) xy+c(a-b)y^2=0 is a perfect square , the value of {(log(a+c)+log(a-2b+c)^2)/log(a-c)}^2 , (a,b,cinR^+,agtc) is