Home
Class 9
MATHS
If (x/y)^4+(y/x)^4=47, where x and y ar...

If `(x/y)^4+(y/x)^4=47`, where x and y are positive real .?isequal to numbers, then `sqrt(x/y)+sqrt(y/x)` is equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(x+(x)/(y))=x sqrt((x)/(y)), where x and y are positive real numbers,then y is equal to x+1 (b) x-1(c)x^(2)+1(d)x^(2)-1

If x ,y ,z are positive real number, then show that sqrt((x^(-1)y) x sqrt((y^(-1)z) x sqrt((z^(-1)x) =1

If x,y,z are positive real numbers, prove that: sqrt(x^-1 y).sqrt(y^-1z).sqrt(z^(-1)x)=1

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If x=2sqrt(5)+sqrt(3) and y=2sqrt(5)-sqrt(3) , then x^(4)+y^(4) =

If x,y,z are positive real numbers show that: sqrt(x^(-1)y)*sqrt(y^(-1)z)*sqrt(z^(-1)x)=1

(sqrt(x)+sqrt(y))^(2)=x+y+2sqrt(xy) and sqrt(x)sqrt(y)=sqrt(xy) , where x and y are positive real numbers . If a=1+sqrt(2)+sqrt(3) and b=1+sqrt(2)-sqrt(3) , then a^(2)+b^(2)-2a-2b=

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1

If x , y ,z are positive real numbers show that: sqrt(x^(-1)y)dotsqrt(y^(-1)z)dotsqrt(z^(-1)x)=1