Home
Class 12
MATHS
If x=sint,y=sin2t , prove that (1-x^2)(...

If `x=sint,y=sin2t` , prove that `(1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+4y=0`

Promotional Banner

Similar Questions

Explore conceptually related problems

If x=sint ,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint,y=sinpt , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2 y=0 .

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sint and y=sinp t , prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If y=sin^(-1) x, prove that (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)=0

If x =sin t,y = sin 2t then prove that (1-x^2)(d^2y)/(dx^2)- x dy/dx + 4y = 0

If x=sint ,y=sinp t ,"p r o v et h a t" (1-x^2)(d^2y)/(dx^2)-x(dy)/(dx)+p^2y=0.

If x=sin t and y=sin pt, prove that (1-x^(2))(d^(2)y)/(dx^(2))-x(dy)/(dx)+p^(2)y=0

(i) If x=sin t , y=sin 2t then prove that (1-x^2)d^2y/dx^2-xdy/dx+4y=0 . If y=gof (x) then find dy/dx.