Home
Class 12
MATHS
If the quadratic equations, a x^2+2c x+b...

If the quadratic equations, `a x^2+2c x+b=0a n da x^2+2b x+c=0(b!=c)` have a common root, then `a+4b+4c` is equal to: a. -2 b. -2 c. 0 d. 1

Promotional Banner

Similar Questions

Explore conceptually related problems

If the quadratic equations, a x^2+2c x+b=0 and a x^2+2b x+c=0(b!=c) have a common root, then a+4b+4c is equal to:

If the quadratic equations, a x^2+2c x+b=0 and a x^2+2b x+c=0(b!=c) have a common root, then a+4b+4c is equal to:

If the quadratic equations, a x^2+2c x+b=0 and a x^2+2b x+c=0(b!=c) have a common root, then a+4b+4c is equal to: a. -2 b. 2 c. 0 d. 1

If the quadratic equation ax^(2)+2cx+b=0 and ax^(2)+2bx+c=0(b!=c) have a common root,then a+4b+4c=

If the quadratic equations,ax^(2)+2cx+b=0 and ax^(2)+2bx+c=0quad (b!=c) have a common root,then a+4b+4c is equal to: a.-2 b.-2 c.0 d.1

If the quadratic equations ax^2+2cx+b =0 and ax^2+2bx+c =0 (b ne 0) have a common root, then a+4b+4c is equal to

If the quadratic equation ax^(2) + 2cx + b = 0 and ax^(2) + 2x + c = 0 ( b != c ) have a common root then a + 4b + 4c is equal to

If the quadratic equation ax^(2) + 2cx + b = 0 and ax^(2) + 2x + c = 0 ( b != c ) have a common root then a + 4b + 4c is equal to

If the quadratic equations ax^(2)+2bx+c=0 and ax^(2)+2cx+b=0, (b ne c) have a common root, then show that a+4b+4c=0

IF x^2 + a x + bc = 0 and x^2 + b x + c a = 0 have a common root , then a + b+ c=