Home
Class 11
MATHS
The locus of point z satisfying R e(1/z)...

The locus of point `z` satisfying `R e(1/z)=k ,w h e r ek` is a nonzero real number, is a. a straight line b. a circle c. an ellipse d. a hyperbola

Promotional Banner

Similar Questions

Explore conceptually related problems

The locus of point z satisfying R e(1/z)=k , where k is a non zero real number, is a. a straight line b. a circle c. an ellipse d. a hyperbola

The locus of point z satisfying Re((1)/(z))=k, where k is a nonzero real number,is a.a a straight line b.a circle c.an ellipse d.a hyperbola

The locus of point z satisfying Re(1/z)=k , where k is a non-zero real number is

The locus of point z satisfying Re ((1)/(z)) = k, where k is a non-zero real number, is : a)a straight line b)a circle c)an ellipse d)a hyperbola

The locus of the point z satisfying Re(1/z) = k , where k is non -zero real number , is :

If z =(lambda+3)+isqrt((5-lambda^2)) ; then the locus of z is a) a straight line b) a semicircle c) an ellipse d) a parabola

If z =(lambda+3)+isqrt((5-lambda^2)) ; then the locus of z is a) a straight line b) a semicircle c) an ellipse d) a parabola

Locus the centre of the variable circle touching |z-4|=1 and the line Re(z)=0 when the two circles on the same side of the line is (A) a parabola (B) an ellipse (C) a hyperbola (D) none of these

Locus the centre of the variable circle touching |z-4|=1 and the line Re(z)=0 when the two circles on the same side of the line is (A) a parabola (B) an ellipse (C) a hyperbola (D) none of these

If z=z_0+A( bar z -( bar z _0)), w h e r eA is a constant, then prove that locus of z is a straight line.