Home
Class 11
MATHS
Roots of the equation are (z+1)^5=(z-1)^...

Roots of the equation are `(z+1)^5=(z-1)^5` are (a) `+-itan(pi/5),+-itan((2pi)/5)` (b)`+-icot(pi/5),+-icot((2pi)/5)` (c)`+-icot(pi/5),+-itan((2pi)/5)` (d)none of these

Promotional Banner

Similar Questions

Explore conceptually related problems

Roots of the equation are (z+1)^(5)=(z-1)^(5) are (a)+-i tan((pi)/(5)),+-i tan((2 pi)/(5))(b)+-i cot((pi)/(5)),+-i cot((2 pi)/(5))(c)+-i cot((pi)/(5)),+-i tan((2 pi)/(5))(d)none of these

Prove that, cos(pi/5)-cos((2pi)/5)=1/2

tan "" (pi)/(5) + 2 tan "" (2pi)/(5) + 4 cot "" (4pi)/(5)=

The value of "tan"(pi)/(5) +2"tan"(2pi)/(5)+4"cot"(4pi)/(5) is

tan""(2pi)/(5)-tan""(pi)/(15)-sqrt(3)tan""(2pi)/(5)tan""(pi)/(15)=?

cos(pi/5)cos((2pi)/5)cos((4pi)/5)cos((8pi)/5)=

Which of the following is/are the value of "cos"[1/2cos^(-1)(cos(-(14pi)/5)]? cos(-(7pi)/5) (b) sin(pi/(10)) cos((2pi)/5) (d) -cos((3pi)/5)

Which of the following is/are the value of "cos"[1/2cos^(-1)(cos(-(14pi)/5)]? cos(-(7pi)/5) (b) sin(pi/(10)) cos((2pi)/5) (d) -cos((3pi)/5)

Which of the following is/are the value of "cos"[1/2cos^(-1)(cos(-(14pi)/5)]? cos(-(7pi)/5) (b) sin(pi/(10)) cos((2pi)/5) (d) -cos((3pi)/5)