Home
Class 9
MATHS
In a \ A B C , If L\ a n d\ M are points...

In a `\ A B C ,` If `L\ a n d\ M` are points on `A B\ a n d\ A C` respectively such that `L M B Cdot` Prove that: `a r\ (\ L C M)=a r\ ( L B M)`

Promotional Banner

Similar Questions

Explore conceptually related problems

In a \ A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M B Cdot Prove that: a r\ (\ L B C)=\ a r\ (\ M B C)

In a \ /_\A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M || B C . Prove that: a r\ (\ /_\L C M)=a r\ (/_\ L B M)

In a \ A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M || B Cdot Prove that: a r\ (\ L B C)=\ a r\ (\ M B C)

In a \ A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M B Cdot Prove that: a r\ (\ L O B)=a r\ (\ M O C)

In a \ A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M || B C . Prove that: a r\ (\ A B M)=a r\ (\ A C L) .

In a \ A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M || B C . Prove that: a r\ (\ L O B)=a r\ (\ M O C) .

In a A B C , If L a n d M are points on A B a n d A C respectively such that L M B Cdot Prove that: a r ( A B M)=a r ( A C L)

In a triangle \ A B C , If L\ a n d\ M are points on A B\ a n d\ A C respectively such that L M || B C . Prove that: a r\ (triangle \ L O B)=a r\ (triangle \ M O C)

A B C D is a parallelogram. L\ a n d\ M are points on A B\ a n d\ D C respectively and A L=C M . Prove that L M\ a n d\ B D bisect each other.

A B C D is a parallelogram. L\ a n d\ M are points on A B\ a n d\ D C respectively and A L=C M . Prove that L M\ a n d\ B D bisect each other.