Home
Class 12
MATHS
A=[(1,0),(-1,3)],R1 harr R2....

`A=[(1,0),(-1,3)],R_1 harr R_2`.

Promotional Banner

Similar Questions

Explore conceptually related problems

[(1,-1),(2,3)]=[(1,0),(0,1)] A,R_(2) rarr R_(2)-2R_(1) gives

Apply the given elementary transformation on each of the following matrices: A = [ [5,4] ,[1,3] ] C_1 harr C_2 , B = [[3,1],[4,5]] , R_1 harr R_2 . What do you observe?

If A=[[1, 0], [-1, 3]] , then R_1 harr R_2 on A gives

If A=[[1,2,-1],[3,-2,5]],then R_1 harr R_2 and C_1 rarr C_1 + 2C_3 gives

[[1,-1],[2,3]] = [[1,0],[0,1]] A, R_2 rarr R_2 - 2R_1 gives

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is

Let for A=[(1,0,0),(2,1,0),(3,2,1)] , there be three row matrices R_(1), R_(2) and R_(3) , satifying the relations, R_(1)A=[(1,0,0)], R_(2)A=[(2,3,0)] and R_(3)A=[(2,3,1)] . If B is square matrix of order 3 with rows R_(1), R_(2) and R_(3) in order, then The value of det. (2A^(100) B^(3)-A^(99) B^(4)) is