Home
Class 12
MATHS
" For "x>1," if "(2x)^(2y)=4e^(2x-2y)," ...

" For "x>1," if "(2x)^(2y)=4e^(2x-2y)," then "(1+log_(e)2x)^(2)(dy)/(dx)" is equal to : "

Promotional Banner

Similar Questions

Explore conceptually related problems

If y = (e^(x)+1)/(e^(x)-1), " then" (y^(2))/2 + (dy)/(dx) is equal to

If y = (e^(x)+1)/(e^(x)-1), " then" (y^(2))/2 + (dy)/(dx) is equal to

If ln((e-1)e^(xy)+x^(2))=x^(2)+y^(2) then ((dy)/(dx))_(1,0) is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=sin(log_(e)x) , then x^(2)(d^(2)y)/(dx^(2))+x(dy)/(dx) is equal to

If y=e^sqrtx+e^(-sqrtx) , then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal to

If y=e^sqrtx+e^(-sqrtx) , then (x(d^2y)/(dx^2)+1/2.(dy)/(dx)) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to

If ln((e-1)e^(xy) +x^2)=x^2+y^2 then ((dy)/(dx))_(1,0) is equal to