Home
Class 12
MATHS
|z|=1" and "z!=+-1," then all the values...

|z|=1" and "z!=+-1," then all the values of "(z)/(1-z^(2))" lie on "

Promotional Banner

Similar Questions

Explore conceptually related problems

If |z|=1 and z ne pm 1 , then all the values of (z)/(1-z^(2)) lie on

If |z|=1andz!=+-1, then all the values of (z)/(1-z^(2)) lie on (a)a line not passing through the origin (b) |z|=sqrt(2)( c)the x -axis (d) the y- axis

If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on (a)a line not passing through the origin (b) |z|=sqrt(2) (c)the x-axis (d) the y-axis

If |z|=1a n dz!=+-1, then all the values of z/(1-z^2) lie on (a)a line not passing through the origin (b) |z|=sqrt(2) (c)the x-axis (d) the y-axis

If absz=1 and z ne+-1 then all the values of z/(1-z^2) lie on

All the roots of (z + 1)^(4) = z^(4) lie on

For all complex numbers z_(1),z_(2) satisfying |z_(1)|=12 and |z_(2) -3-4i|=5, then minimum value of |z_(1)-z_(2)| is-

For all complex numbers z_(1), z_(2) satisfying |z_(1)|=12 and |z_(2)-3-4 i|=5 , the minimum value of |z_(1)-z_(2)| is