Home
Class 12
MATHS
[" 17.The solution of "],[log(sqrt(3))x+...

[" 17.The solution of "],[log_(sqrt(3))x+log_((1)/(3))x+log_(sqrt(3))x+...+log_(45)x=36" is "],[[" (A) "x=3," (B) "x=4sqrt(3)],[" (C) "x=9," (D) "x=sqrt(3)]]

Promotional Banner

Similar Questions

Explore conceptually related problems

The solution of log_(sqrt(3))x+log_((3)^((1)/(4)))x+log_((3)^((1)/(6)))x+....+log_((3)^((1)/(16)))x=36

log_(x)2x<=sqrt(log_(x)(2x^(3)))

sqrt(log_(3)7)=x^(sqrt(log_(7)3))find x

The domain of the function f(x)=sqrt(1-log_(2)(log_(sqrt(3))x))

The equation x[(log_(3)x)^(2)-(9)/(2)log_(3)x+5]=3sqrt(3) has

The value of e^(log_(e)x+log_(sqrt(2))x)+log_(e^((1)/(3)))x+...+log_(e^((1)/(10)))x)=

The domain of sqrt(log_((x)/(3))+1) is

Solve log_(x)3+log_(3)x=log_(sqrt(3))x+log_(3)sqrt(x)+(1)/(2)

sqrt(log_(3)(3x^(2))log_(9)(81x))=log_(9)x^(3)

Solve log_(3)(x+2)(x+4)+log_(1//3)(x+2) lt 1/2 log_(sqrt3)7 .