Home
Class 9
MATHS
(a^(3)+3ab^(2))/(3a^(2)b+b^(3))...

(a^(3)+3ab^(2))/(3a^(2)b+b^(3))

Promotional Banner

Similar Questions

Explore conceptually related problems

If a = (sqrt5 + 1)/(sqrt5 + 1) and b = (sqrt5 -1)/(sqrt5 + 1) , then find the value of (a) (a^(2) + ab + b^(2))/(a^(2) - ab + b^(2)) (b) ((a -b)^(3))/((a + b)^(3)) (c) (3a^(2) + 5ab + b^(2))/(3a^(2) - 5ab + b^(2)) (d) (a^(3) + b^(3))/(a^(3) - b^(3))

If a:b=2:3, then the value of (5a^(3)-2a^(2)b):(3ab^(2)-b^(3)) is :

Factorise : a^(3) - ab^(2) + a^(2)b - b^(3)

Cube of a binomial: (a+b)^(3)=a^(3)+3a^(2)b+3ab^(2)+b^(3)

Cube of a binomial: (a+b)^(3)=a^(3)+3a^(2)b+3ab^(2)+b^(3)

The product (a+b)(a-b)(a^(2)-ab+b^(2))(a^(2)+ab+b^(2)) is equal to: a^(6)+b^(6)(b)a^(6)-b^(6)(c)a^(3)-b^(3)(d)a^(3)+b^(3)

If (a^(2)+b^(2))^(3)=(a^(3)+b^(3))^(2) and ab!=0 the numerical value of (a)/(b)+(b)/(a) is:

Factorize: a^(3)+3a^(2)b+3ab^(2)+b^(3)-8

Factorize: a^(3)+3a^(2)b+3ab^(2)+b^(3)-8