Home
Class 12
MATHS
" If "sin^(-1)x+sin^(-1)y=(pi)/(2)," the...

" If "sin^(-1)x+sin^(-1)y=(pi)/(2)," then "(1+x^(4)+y^(4))/(x^(2)-x^(2)y^(2)+y^(2))" is equal to "

Promotional Banner

Similar Questions

Explore conceptually related problems

If "sin"^(-1)x+"sin"^(-1)y=pi/2 , then (1+x^4+y^4) /( x^2-x^2y^2+y^2) is equal to

If sin^(-1)x+sin^(-1)y=pi/2 , then (1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to a)1 b)2 c) 1//2 d)None of these

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to

If sin^(-1)x +sin^(-1)y+sin^(-1)z=pi then x^(4)+y^(4)+z^(4)+4x^(2)y^(2)z^(2)=

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to 1 (b) 2 (c) 1/2 (d) none of these

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to 1 (b) 2 (c) 1/2 (d) none of these

If sin^(-1)x+sin^(-1)y=pi/2,t h e n(1+x^4+y^4)/(x^2-x^2y^2+y^2) is equal to 1 (b) 2 (c) 1/2 (d) none of these

If sin^(-1)x+sin^(-1)y=(pi)/(2), "then" cos^(-1)x+cos^(-1)y is equal to

If Sin^(-1)x+Sin^(-1)y+Sin^(-1)z=pi//2,"then "x^(2)+y^(2)+z^(2)+2xyz=