Home
Class 12
MATHS
Let alpha and beta be the distinct roots...

Let `alpha` and `beta` be the distinct roots of `ax^(2) + bx + c = 0` then `underset(x to alpha)(Lt) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2))` equal to

Promotional Banner

Similar Questions

Explore conceptually related problems

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 . Then underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) equal to

Let alpha and beta be the distinct roots of ax^(2) + bx + c = 0 , then lim_(x rarr alpha) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

Let alpha and beta be the roots of ax^2 + bx +c =0 , then underset(x to alpha)(lim) (1 - cos (ax^(2) + bx + c))/((x - alpha)^(2)) is equal to :

Let alpha and beta be the distinct roots of ax^(2)+bx+c=0," then "underset(x to a)lim (1-cos(ax^(2)+bx+c))/((x-alpha)^(2))

Let alpha and beta be the distinct root of ax^(2) + bx + c=0 then lim_(x to 0) (1- cos (ax^(2)+ bx+c))/((x-alpha)^(2)) is equal to

Let alpha and beta be the roots of ax^2+bx+c=0 Then lim_( x to alpha) (1- cos (ax^2+bx+c))/(x-alpha)^2 is equal to

If alpha and beta are the roots of the equation ax^(2)+bx+c=0 , then show that underset(xrarralpha)"lim"(1-cos(ax^(2)+bx+c))/((x-alpha)^(2))=(a^(2))/(2)(alpha-beta)^(2)

If alpha,beta are the distinct roots of x^(2)+bx+c=0 , then lim_(x to beta)(e^(2(x^(2)+bx+c))-1-2(x^(2)+bx+c))/((x-beta)^(2)) is equal to

If 'alpha' is a repeated root of ax^(2)+bx+c=0 then Lt_(x to alpha)(tan(ax^(2)+bx+c))/((x-alpha)^(2))=