Home
Class 12
MATHS
sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y)...

sqrt(1-x^(2))+sqrt(1-y^(2))=a(x-y)

Promotional Banner

Similar Questions

Explore conceptually related problems

If sqrt(1-x^(2) ) + sqrt(1-y^(2)) = x-y , then dy/dx =

If sqrt(1-x^(4))+sqrt(1-y^(4))=k(x^(2)-y^(2)), prove that (dy)/(dx)=(x sqrt(1-y^(4)))/(y sqrt(1-x^(4)))

Find the degree of the differential equation satisfying the relation sqrt(1+x^(2))+sqrt(1+y^(2))=lambda(x sqrt(1+y^(2))-y sqrt(1+x^(2)))

The degree of the differential equation satisfying the relation sqrt(1+x^(2))+sqrt(1+y^(2))=lambda(x sqrt(1+y^(2))-y sqrt(1+x^(2)))

If x and y are real numbers such that (x+sqrt(1+x^(2)))(y+sqrt(1+y^(2)))=1. Then find x+y

Q.tan^(^^)-1x+tan^(^^)-1y=pi+tan^(^^)-1((x+y)/(1-xy)) if x,y>0 and xy>0Q*cos^(^^)-1x+cos^(^^)-1y=2pi-cos^(^^)-1(xy-sqrt(1-x^(^^)2)sqrt(1-y^(^^)2)) if x+y<0