Home
Class 12
MATHS
[" Let "f(x)={[[x],,x!in I],[x-1,,x in I...

[" Let "f(x)={[[x],,x!in I],[x-1,,x in I']" (where [.] denote the greatest integer function) and "],[g(x)={[sin x+cos x,x<0],[1,],[" (A) "lim_(x rarr0)(g(x))" exists but not continuous "],[" (B) continuous but not differentiable at "x=0],[" (C) differentiable at "x=0],[" (D) "lim_(x rarr0)(g(x))" does not exist: "]]

Promotional Banner

Similar Questions

Explore conceptually related problems

If f(x)= [sin^2x] (where [.] denotes the greatest integer function ) then :

Let f(x)=(-1)^([x]) where [.] denotes the greatest integer function),then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=cos |x|+[|sin x/2|] (where [.] denotes the greatest integer function), then f (x) is

If f(x)=(x-[x])/(1-[x]+x), where [.] denotes the greatest integer function,then f(x)in:

The function f(x) = [x] cos((2x-1)/2) pi where [ ] denotes the greatest integer function, is

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is

Let f(x)=|x| and g(x)=[x] , (where [.] denotes the greatest integer function) Then, (fog)'(-1) is