Home
Class 11
MATHS
If tanA & tanB are the roots of the qua...

If `tanA & tanB` are the roots of the quadratic equation, `ax^2 +bx + c = 0` then evaluate a `sin^2(A +B) + b sin(A + B),.cos(A + B)+ c cos^2(A +B)`.

Promotional Banner

Similar Questions

Explore conceptually related problems

If tan A & tan B are the roots of the quadratic equation x^2 - ax + b = 0 , then the value of sin^2 (A +B) is:

If tan A & tan B are the roots of the quadratic equation a x^(2) +bx+c=0 then evaluate a sin^(2)(A+B)+b sin (A+B).cos (A+B)+cos^(2)(A+B)

If tan A&tan B are the roots of the quadratic equation x^(2)-ax+b=0 ,then the value of sin^(2)(A+B) is:

If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 then evaluate 4sin^(2)(A+B)-7sin(A+B)*cos(A+B)+cos^(2)(A+B) .

If tanA and tanB the roots of the quadratic equation, 4x^(2)-7x+1=0 then evaluate 4sin^(2)(A+B)-7sin(A+B)*cos(A+B)+cos^(2)(A+B) .

If tan A and tan B are the roots of the quadratic equation, 3x^(2)-10x-25=0, then the value of 3sin^(2)(A+B)-10sin(A+B)*cos(A+B)-25cos^(2)(A+B) is

If sin theta and cos theta are the roots of the quadratic equation ax ^(2) +bx + c=0(a ne 0). Then find the value of (b ^(2) -a^(2))/(ac ).